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It has been shown that digital dynamic speckle photography is an effective method for quantitative diagnostics
of changes in the structure of paper processed by pulsed discharge. A theory of the dynamic statistics of
speckle fields and mathematical relations are given. In using optical magnification M = 1, the software de-
veloped permits fast statistical processing of up to 250,000 microzones in a two-dimensional CCD image of
size 20 × 30 mm. The results obtained point to a high spatial and temporal resolution of the method and the
possibility of its real-time realization. It has been shown that noise filtering is an important part of speckle
image processing. The software permits filtering both in direct calculation of the correlation function and in
the Fourier plane with the use of the fast Fourier transform.

Introduction. Monitoring of the internal structure of materials is a traditional problem of diagnostics, in solv-
ing which a wide experience has been gained. For various problems on these lines, along with optical methods, acous-
tic, X-ray, induction, and other methods as well as their combinations are used successfully [1].

Before the advent of lasers optical diagnostic techniques found wide application and gained deserved recogni-
tion in many directions of scientific research due to their numerous advantages, the most important of which are the
nonperturbative character of measurements, high spatial and temporal resolution, zero lag, high accuracy, and informa-
tiveness [2, 3]. This also holds for diagnostics based on the registration and analysis of the radiation scattered by the
investigated medium [4–6]. Diagnostics with the use of scattered radiation becomes especially attractive when turning
to the analysis of the microstructure of an inhomogeneous semitransparent medium. In the first works on scattering,
such media, with account for single scattering, were called "turbid," and media in which the processes of multiple
scattering are significant are called "highly turbid" ones (see, e.g., [4, 5]). Paper of thickness 20–200 µm is a typical
example of a "highly turbid" medium and serves as a good generator of speckle fields. Later such media were called
inhomogeneous, randomly inhomogeneous, dispersive, polydispersive, etc., since it is precisely optical inhomogeneities
of the internal structure of a medium with a spatial scale of the order of the radiation wavelength that are the cause
of light scattering. The nature of such optical inhomogeneities can be entirely different. Inhomogeneities of the com-
plex refractive index can be due to both foreign bodies (water droplets and specks of dust in the atmosphere, suspen-
sions and emulsions, foreign inclusions in transparent media) and fluctuations of the molecular density and orientation
that change the dielectric constant of the medium [6, 7].

A powerful impetus to the development of optical diagnostic techniques was given by the discovery of laser
systems and their wide reduction to practice of measurements (see, e.g., [8–11]). With the advent of lasers, work on
optical diagnostics in diffuse coherent radiation in the presence of clearly defined speckle fields underwent develop-
ment [12–16]. Initially, the appearance of speckles (microspots) on optical images was treated as undesirable noise.
Many researchers tried to suppress this noise. However, in the early 1970s, mainly upon the publication of the results
of the experiments conducted by Burch and Tokarskii [17], new potentialities of practical use of speckle distributions
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of the laser intensity in novel measuring technologies opened up. Methods for investigating dispersive media based on
the analysis of temporal fluctuations of scattered radiation, often called methods of optical shift, correlation or dy-
namic spectroscopy, as well as the laser-Doppler method, similar to the above-mentioned ones, in which fluctuations
of the scattered radiation frequencies are analyzed, became popular [18–21]. The methods of dynamic speckle inter-
ferometry include analysis of both temporal and spatial fluctuations of the radiation scattered by a dispersive medium
(see, e.g., [15]).

Below we propose a simple method for investigating the microstructure of a stationary scattering medium
based on the statistical analysis of only spatial fluctuations (speckle fields) in the laser radiation scattered by the me-
dium. The application of this approach is based on the digital technique of radiation recording with a high spatial reso-
lution and direct recording in the PC memory of speckle fields, from whose statistical analysis quantitative information
about the microstructure of the investigated medium is extracted. As our investigations have shown, the proposed
method is a reliable tool for monitoring changes in the microstructure of paper upon its processing by the plasma of
pulsed low-current discharge.

Experimental Facility. The structural changes in the investigated samples of paper were diagnosed by their
probing with a narrow laser beam. A speckle field was generated directly in the sample being investigated as a result
of the three-dimensional interference of the multiply scattered coherent radiation and projected by the imaging optical
system on a high-resolution CCD matrix in much the same way as in diagnosing microflows in micro-PIV [22] and
in diagnosing biotissues by the method of laser dynamic speckle interferometry [23] (see Fig. 1).

The laser radiation was focused directly on the sample, as is shown in Fig. 2a, or was supplied by
means of an optical fiber (see Fig. 2b). Analysis of the data obtained was carried out by calculating the statisti-
cal functions of the first and second orders. Averaging was carried out over a small zone of the CCD matrix
containing a sufficient number of working cells (pixels), and the image in each pixel of the camera is formed as
a result of the total scattering in the control volume in the sample into the solid angle Ω. Thus, in each zone
(averaging window) the set of statistical functions characterizing the local microstructure of the investigated sam-
ple was determined. The speckle field obtained was recorded by a Nikon D70S CCD camera (Japan) containing
3008 × 2000 pixels on a 20 × 30-mm matrix.

The spatial resolution of measurements is determined by the sizes of the averaging windows, by which auto-
correlation analysis of the recorder speckle field is performed. With optical magnification M = 1 and averaging over
the minimal windows containing 5 × 5 or 7 × 7 pixels the limiting spatial resolution is about 50 µm in simultaneous
monitoring of the whole object of size 20 × 30 mm. Importantly, as this field decreases with increasing number of
M, the spatial resolution can be markedly increased. In measurements of an object of size 2 × 3 mm, the optical mag-
nification can amount to M = 10 and the spatial resolution will be about 5 µm. In Prof. Meinhart’s works [24, 25],
optical magnification M = 100 realized with the aid of a Nikon ECLIPSE E 600FN microscope is used. Such an op-
tical configuration permitted obtaining, even on a relatively small matrix of 1280 × 1024 pixels, an image of a speckle
field with sizes of 415 × 415 µm and a spatial resolution of about 1 µm. An insignificant further improvement of the
spatial resolution is possible if the averaging windows are closed, which makes it possible to increase 2–4 times the
number of vectors being determined (see below). The above quantities pertain to the spatial resolution of microstruc-

Fig. 1. Block-diagram of the experimental speckle tomograph of the structure
of semitransparent inhomogeneous media: 1) probing laser; 2) investigated dif-
fuse object (paper); 3) speckle field imaging optical system; 4) digital camera;
5) high-resolution CCD matrix; 6) optical memory; 7) personal computer.
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Fig. 2. Speckle field formation under radiation scattering by a diffuse object il-
luminated by a laser source with Gaussian intensity distribution (a) and a
source with "limited" Gaussian distribution (b).

Fig. 3. Speckle field formation on the CCD matrix under radiation scattering
by a diffuse object with the help of a single-lens optical system when the ob-
ject is illuminated by a collimated laser source (a) and a laser source with
Gaussian intensity distribution (b).
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ture variations within the limits of the sample being investigated. The spatial scales of the registered changes in the
microstructure of the investigated samples are much lower and lie in the submicron range. The optical magnification
in macrophotography was adopted to the investigated object by means of the optical systems shown in Figs. 3 and 4.

The depth of focus in imaging through the optical system, a microscope, is determined by the relation (see
[24, 26])

δz = 
n~λ0

NA
2 + 

n~δpx

MNA
 = δzd + δzg . (1)

Substituting NA = n~a ⁄ f and λ0 = n~λ into (1), we obtain the estimate of the diffraction term in relation (1) δzd C λn~(f ⁄ a)2.
Accordingly, the geometrical correction will have the form δzg C δpxf ⁄ Ma. For the size of the registered inhomogeneity
dp ≥ δpx

 ⁄ M, in [24] a simple engineering relation for the depth of focus

δz = 
3λ0

n~a
2 f

 2
 + 2.16dp 





1

tan Θ





(2)

was obtained. The results of the calculations of noises by these relations for media with a small volume fraction of
scattering centers are given in Table 1. These data show that for the chosen image geometry averaging of the results
of measurements on the z-axis occurs in most cases over the whole thickness of the investigated samples of paper.

The temporal resolution of monitoring is determined by the laser characteristics, the measuring circuit, and the
technical parameters of the camera and the processor. In using a pulse-periodic laser, the temporal resolution is deter-
mined by the minimal time interval between successive lasing pulses, the frequency of image storage by the CCD
camera, and the time of correlation analysis of obtained images on the PC. Optimization of the software makes it pos-

Fig. 4. Speckle field formation on the CCD matrix with the help of a two-lens
optical system with the investigated diffuse object illuminated by a collimated
laser source.

Depth of focus δz, µm
Concentration of scattering centers (by volume) Nv, %

0.01 0.02 0.04 0.08

25 2.2 2.1 2.0 1.9

50 1.9 1.7 1.4 1.2

125 1.5 1.4 1.2 1.1

170 1.3 1.2 1.1 1.0

TABLE 1. Signal-to-Noise Ratio in the Image Focus under Volume Illumination of the Scattering Centers
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sible to realize real- or quasi-real-time processing of images with a frequency of obtaining processed results equal to
1–25 Hz [27].

Statistical Processing of Measurement Data. A speckle field is formed in scattered light as a result of the
interference of all beams hitting a given point. It is assumed that by virtue of the object diffusivity the phase differ-
ences of all these beams are uniformly distributed in the range from 0 to 2π. Let x = x(x, y) be the Cartesian coor-
dinates in the object plane and X = X(x′, y′) be the coordinates in the image (viewing) plane (see Figs. 2–4). When
a plane diffuse object is illuminated by a stationary light wave having a complex amplitude E0 = E0(x), the complex
amplitude of the scattered wave in the detection plane will be defined by the transfer function of the optical system
K = K(x, X)

E (X, t) = ∫ E0 (x, t) × K (x, X) dx . (3)

To analyze more complex optical configurations, let us introduce, for simplicity of recording, one-dimensional
transfer functions of the optical system ri = K(0, X)

2 and r0 = K(0, X)
2 (Table 2). For a lens-free geometry (see

Fig. 2), the full transfer function is given as

K (x, X) = 
k

i2πl
 exp 




ik 

|x − X|
2

2l




 exp (ikl) . (4)

For a one-lens optical configuration, this function is written as [28]

K (x, X) = 
− k

2
q

2

4πil1l2
 exp 





− k
2
q

2

4 (1 + θ1
2)

 




x

l1
 − 

X

l2





2


 exp 




i 



k 



l1 + l2 + 

|x|
2

2l1
 + 

|X|
2

2l2




 +

+ tan
−1

 θ1 − 
k

2
q

2θ1

4 (1 + θ1
2)

 




x

l1
 − 

X

l2





2


  



 .

(5)

The parameters l1, l2 and q are given in Fig. 3, and θ1 = 
kq2

2
 


1
l1

 + 
1
l2

 − 
1
F



 .

Optical configuration Formulas for calculating optical system parameters

Fig. 2a rs = 
2l

k0w — —

Fig. 2b rs = 
l
l0
ζ0 — —

Fig. 3a rs = 
2l2
k0q r0 = 

1
2

rs(1 + θ1
2)1

 ⁄ 2 ri = 
l1

k0q
(1 + θ1

2)1
 ⁄ 2

Fig. 3b rs = 
2l2
k0q r0 = 

1
2

rs(1 + θ1
2)1

 ⁄ 2 ri = 
l1

k0q
(1 + θ1

2)1
 ⁄ 2

Fig. 4 rs = 
2

k0q




l3 + l4 — 

l3l4
F2





r0 = 
1
2

rs(1 + θ2
2)1

 ⁄ 2 ri = 
l1l2A1

k0q
(1 + θ2

2)1
 ⁄ 2

Fig. 4, l2 = F2, l3 = F2 rs = 
2F2

k0q
r0 = 

1
2

rs(1 + θ3
2)1

 ⁄ 2 ri = 
F

k0q
(1 + θ3

2)1
 ⁄ 2

TABLE 2. Average Size of Speckles rs and Transfer Functions of the Optical System r0 and ri for Different Optical
Configurations (Figs. 2–4)
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For a more complex imaging system consisting of two lenses, as is shown in Fig. 4, the transfer function is
of the form

K (x, X) = 
− k

2
q

2

4πil1l2l3l4A1A2 (1 + θ2
2)1

 ⁄ 2
 exp 





− k
2
q

2

4 (1 + θ2
2)

 




x

A1l1l2
 − 

X

A2l3l4





2


 ×

× exp 



i 



k l1 + l2 + l3 + l4 i tan

−1
 θ2


 + i 

k

2
 




1

l1
 



1 − 

1

A1l1




 |x|

2
 + 

1

l4
 



1 − 

1

A2l4




 |X|

2


 − (6)

− i 
k

2
q

2θ2
2

4 (1 + θ2
2)

 




x

A1l1l2
 − 

X

A2l3l4





2


   



 .

Here A1 = 
1

l1
 + 

1

l2
 − 

1

F1
; A2 = 

1

l3
 + 

1

l4
 − 

1

F2
; θ2 = 

kq2

2
 


1

l2
 + 

1

A1l2
2 − 

1

A2l3
2



 .

The first-order statistical functions for a speckle field are expressed in terms of the probability density of the
intensity distribution pI(I). For an ideal speckle field, this function obeys the Gaussian statistics:

pl (I) = 











1

√2π  σI

 exp 

− 

I

2σI
2



 ,     I ≥ 0 ;

0 ,                         I < 0 .
(7)

With the aid of this function the speckle field contrast

C = 
σI

sIt
(8)

can be defined.
In digital recording of the field with the aid of the CCD matrix, the laser radiation intensity can be given in

the matrix form I(p′, q′), and the contrast value can be determined by direct calculation in each window (m, n) of av-
eraging by the formula

C (m, n) = 
σI (m, n)
sI (m, n)t

 = 
√sI (m, n)2t − sI (m, n)t2

sI (m, n)t
 =

= 

√1
MN

 ∑ 

p′=1

M

 ∑ 

q′=1

N


I

m,n
 (p′, q′)

2
 − 








1
MN

 ∑ 

p′=1

M

 ∑ 

q′=1

N

I
m,n

 (p′, q′)







2

1
MN

 ∑ 

p′=1

M

 ∑ 

q′=1

N

I
m,n

 (p′, q′)

 ,

(9)

where σI(m, n) is the rms deviation of the intensity in the window. In the ideal speckle field, this value is equal to
the average speckle field intensity σI(m, n) = sI(m, n)t, and the contrast C(m, n) = 1. When the statistics is disturbed,
e.g., due to a change in the microstructure of the object being investigated, the field contrast changes and the micro-
structure modification can be characterized quantitatively by the changes in the contrast.

The second-order statistical functions are the most general forms of describing the spatial-temporal variations
of speckle fields [29]. For the fluctuating component ∆I = I − sIt of the radiation intensity in the speckle field, the
space-time autocorrelation function J∆I can be given as follows:
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I∆I (X1, X2, t1, t2) = s∆I (X1, t1) ∆I
∗
 (X2, t2)t . (10)

The autocorrelation function for the complex wave amplitude is defined as

IE (X1, X2, t1, t2) = sE (X1, t1) E
∗
 (X2, t2)t . (11)

These functions characterize the cross correlation of the two fields obtained at different points in the space and at dif-
ferent instants of time, and upon adequate normalization they vary in the range from 0 to 1.

An important second-order statistical function is also the so-called radiation power spectrum defined as a
Fourier transform of the corresponding autocorrelation function (see [15]). According to the Wiener–Khinchin theorem,
this function can be expressed as follows:

AE (ν, ω) = 


1
2π





1 ⁄ 2
 ∫ IE (r, τ) exp (− iνr) exp (− iωτ) drdτ ,

(12)

where ω = ω= [ωx
2 + ωy

2]1 ⁄ 2, but ν = ν = [νx
2 + νy

2]1 ⁄ 2 and r = r = [(∆x)2 + (∆y)2]1 ⁄ 2.

Restricting ourselves to the consideration of only the spatial fluctuations, we will represent these functions for
an ideal speckle field formed by a lens of diameter DL as

I∆I (r) = sIt
2
 













1 + 













2 

J1 




πDLr

λz





πDLr

λz













2 











 ,

AI (ν) = sIt
2
 









δ (νx, νy) + 




λz
DL





 2

 
4
π

 









cos
−1

 




λz
DL

 ν



 − 

λz
DL

 ν √1 − 




λz
DL

 ν




 2

 









 









 .

(13)

Let us denote by rh the characteristic correlation size for the structure of the investigated object. For the gen-
eration of speckle fields with Gaussian statistics, it is necessary that in the volume πrh

2dh only one scattering center is
situated and that such centers are uniformly distributed over the entire diffuse object. Then

IE = πrh
2
 ∫ E0 (x1, t1) E0

∗
 (x1, t2) K (x1, X1) K

∗
 (x1, X2) dx1 . (14)

The diffuse object can be illuminated by lasers with different intensity distributions over the object surface.
The most common case is the Gaussian distribution

E0 (x, t) = 
w0

w
 



− 

|x|
2

w
2  − i 




w0t − k0z − 

π

λρ
 |x|

2
 − ϕ0








 .

(15)

The quantities w and ρ here denote the radii of the laser beam and the wavefront curvature, and the quantities with
subscripts 0 denote the parameters in the region of the waist (in "focus") as is shown in Fig. 2a. For a laser source
with the Gaussian intensity distribution in the waist region the laser beam radius and the wavefront curvature will be

defined by the following relations: w = w0 

1 + 



z
z′




 2




1 ⁄ 2
 and ρ = z 




1 + 





z′
z




 2


, where z′ = 

π
λ

 w0
2.

With allowance for the measurement error the autocorrelation function in the window being considered can be
defined as
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I∆I = I = I
∗
 + σn . (16)

In the Fourier plane, this relation will have the form

F 



I∆I




 = F 




I



 F 




I
∗


 + σ~n , (17)

and the estimate of the sought autocorrelation function J~∆I is obtained by the relation

I
~
∆I = F

−1
 



F 



I
~

 F 



I
~∗






 . (18)

The function J∆I(m, n) can be calculated by direct comparison of the corresponding intensities:

I∆I (m, n) = 
MN

(M − n) (N − n)
 















∑ 

p′=1

M−m

 ∑ 

q′=1

N−n

  I (p′, q′) I (m + p′, n + q′)

∑ 

p′=1

M

 ∑ 

q′=1

N

(I (p′, q′))2















 . (19)

Results and Discussion. Figures 5–7 give various statistical functions of speckle fields and their modifications
upon processing of the speckle field generators — paper samples — by a pulsed low-current discharge. The typical
three-dimensional autocorrelation function of the speckle field being analyzed has a clearly defined maximum at the
origin of coordinates and rapidly decreases upon receding from it. The circle diameter in the section of this function
as it decreases by a factor of 2.71 (denoted below as D∞) characterizes the average size of speckles (in pixels) in the
recording plane. Let us denote as sd∞t the average statistical size of speckles in the field generated by the unproc-
essed paper and as sdt = (sdxt

2 + sdyt
2)1

 ⁄ 2 in the speckle field generated by the processed sample [22]. Upon optical
processing of the specklograms the Fourier transform of the single-exposure specklogram represents a diffraction halo
formed after the specklogram upon its scanning by a laser beam. The halo obtained is not modulated by the interfer-
ence fringes as in the case of the double-exposure specklogram. Consequently, these sections represent either concen-
tric circles for the isotropic samples or ellipses with the direction of the semimajor axis orthogonal to the direction of
the dominant deformation of speckles in investigating the processed samples. In optical processing, the measured pa-
rameters in each specklogram window are semiaxes of the diffraction halo ellipse Dx, Dy. In the presence of anisot-
ropy, the values of these semiaxes can be different. As mentioned above, these values or, to be more precise, their
differences from the diameter of the initial speckle field diffraction halo D∞ are proportional to the deformation win-
dow-averaged difference of the elongation of speckles along the corresponding orthogonal axes s∆dxt = sdx − d∞t,
s∆dyt = sdy − d∞t:

Fig. 5. Sections of the spatial autocorrelation function of the speckle field gen-
erated by the paper before processing (at the center) and after processing by
pulsed discharge plasma (on the left). On the right, the difference isolines of
the obtained functions are shown.
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D∞ (m, n)

Dx (m, n)
 = C1 

sdxt (m, n)
sd∞t (m, n)

 = C1 
s∆dxt (m, n) + sd∞t (m, n)

sd∞t (m, n)
 ,

(20)

D∞ (m, n)

Dy (m, n)
 = C1 

sdyt (m, n)
sd∞t (m, n)

 = C1 
s∆dyt (m, n) + sd∞t (m, n)

sd∞t (m, n)
 .

(21)

In digital processing of images, the values of Dx and Dy are determined directly by the calculated autocorrelation function.
Analysis of the data presented in Fig. 5 shows that in paper processing the spatial autocorrelation function un-

dergoes marked changes, which points to a considerable modification of the microstructure of the investigated sample.
The processing conditions were chosen so that no apparent changes in the structure are observed with the aid of the
microscope. The difference between the correlation functions in the maximum reaches 20% of the correlation function
in the peak, which is more than enough for reliable monitoring of the change in the microstructure of samples in their

Fig. 6. Probability distribution density for the intensity in the speckle field
upon processing of the speckle field generator — a paper sample — by pulsed
discharge plasma for different processing regimes: a) by helium plasma; b) by
nitrogen plasma.

Fig. 7. Differences of the probability distribution density for the intensity in
the speckle field of the control paper sample and after its processing by pulsed
discharge plasma for different processing regimes: a) upon processing by he-
lium plasma; b) upon processing by nitrogen plasma.
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processing by the low-current pulsed discharge plasma. Analysis of the spatial distribution of this difference (Fig. 5,
on the right) shows that upon modification of the structure its anisotropy markedly increases.

Figure 6 shows the probability density distributions for the intensity in speckle fields under different condi-
tions of paper processing. Analysis of the data presented shows that histograms are also a convenient form of presen-
tation of the results of statistical processing of speckle fields for monitoring changes in the microstructure of analyzed
samples. The difference between the histograms at individual points reaches 40% of the initial value and permits posi-
tive identification of processed parts of the paper.

Conclusions. The possibility of quantitative diagnostics of changes in the microstructure of scattering media
with the use of statistical analysis of numerically registered speckle fields generated by the investigated samples has
been shown. The software developed makes it possible to recover up to 250,000 vectors of the spatial deformation of
speckle fields in a two-dimensional region of size 20 × 30 mm in imaging a speckle field with magnification M = 1.
The size of the investigated region can be reduced by a factor of 10–100 with the use of microoptics with the neces-
sary magnification. In the proposed configuration, the spatial resolution in the measurement plane is about 100 µm. On
the coordinate along the optical beam, averaging of the information over the whole thickness of the sample (20–200
µm) occurs. The use of tomographic methods for reconstructing the microstructure [31] is the topic of future studies.

The authors thank O. G. Penyaz’kov for support and helpful discussions, and P. P. Khramtsov and S. P. Rub-
nikovich for useful recommendations and assistance in performing experiments and developing programs for mathe-
matical processing of images, as well as the INTAS and the NAS of Belarus for financing part of the work with
grants and projects INTAS 03-51-3332, "Vodorod-19," "Nanotech 1.13," and "Thermal processes-25."

NOTATION

a, object radius, m; A1, A2, coefficients, m−1; C1, normalizing factor; d, size of speckles in the field gen-
erated by the processed sample, µm; Dx, Dy, semiaxes of the diffraction halo ellipse, m; D∞, diameter of the dif-
fraction halo ellipse of the initial speckle field, m; d∞, size of speckles in the field generated by the unprocessed
sample, µm; dh, characteristic correlation depth, m; dp, size of recorded inhomogeneity, µm; ∆dx, ∆dy, difference
characteristics of the elongation of speckles along the corresponding axes, µm; DL, lens diameter, m; E0, complex
amplitude vector of the stationary wave, V; E(X, t), complex amplitude vector of the wave, V; E, modulus of the
complex amplitude of the wave, V; f, focal length of the objective, m; F, F1, F2, focal lengths of the lenses, m;
h0, fiber radius, µm (see Fig. 2b); i, imaginary unit; I(m, n), laser radiation intensity in the speckle field, W/m2;
I∗(m, n), transposed laser radiation intensity in the speckle field, W/m2; J1(...), first-order Bessel function; k0, k,
wave numbers, cm−1; K(x, X), transfer function of the optical system; l, distance from the object plant to the
image plane, m; l0, distance from the source plane to the image plane, m; M, N, sizes of the discretization domain
in statistical processing; (m, n), current coordinates in the original image; NA, numerical aperture of the receiving
lens; n~, refractive index of the air; Nv, concentration of the scattering centers, % (see Table 1); PF and PV, fre-
quency and intensity of pixels (see Fig. 7); pI(I), probability density for the speckle field intensity; (p′, q′), cell
number in the CCD matrix; q, image lens radius (see Figs. 3, 4); r, z, spatial coordinates, m; rh, characteristic
size of correlation, m; rs, average size of speckles, µm; r0, ri, one-dimensional transfer functions of the optical
system; t, time, sec; w, current radius of the laser beam, m; w0, laser beam radius in the waist (focus), mm; x, X,
vectors in the object and image plane, respectively, m; (x, y), coordinates in the object plane, m; (x′, y′), coordi-
nates in the image plane, m; α, angle of incidence of radiation, rad (see Figs. 3, 4); δ(...), delta function; δz,
depth of focus, µm; δzd, diffraction term, µm; δzg, geometrical correction, µm; δzpx, distance between sensitive ele-
ments in the CCD matrix, µm; ζ0, ζ1, speckle radii in the source plane and the diffuse object plane, respectively,
µm (see Fig. 2); Θ, probing radiation scattering angle, rad; θ1, θ2, parameters; λ, laser radiation wavelength in the
medium, µm; λ0, laser radiation wavelength in vacuum, µm; (ν, ω), current coordinates in the Fourier plane; ρ,
wavefront curvature, m; σn, experimental noise in the initial intensity of the speckle field, W/m2; σ~n, experimental
noise in the Fourier plane, W/m2; σI, rms deviation of the laser radiation intensity in the subregion, W/m2; τ, time
interval, sec; ϕ0, initial phase difference, rad; Ω, solid angle, sr; C(m, n), speckle field contrast; Fp...q, Fourier
transform operator; JE, J∆I, autocorrelation functions for the fluctuating component of the laser radiation and the
complex amplitude of the wave, respectively; M, optical magnification in specklogram recording; U(ν, ω), radiation
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power spectrum. Subscripts: d, diffraction; g, geometric; h, characteristic; L, lense; n, nois; p, particle; px, pixel; s,
speckle; v, volume; 0, initial value of a physical quantity; 1, 2, 3, ..., ordinal values of physical quantities; s...t,
mean value of a quantity; ∗, complex conjugation, transposition.
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